If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5m^2+16m+5=0
a = 5; b = 16; c = +5;
Δ = b2-4ac
Δ = 162-4·5·5
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{39}}{2*5}=\frac{-16-2\sqrt{39}}{10} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{39}}{2*5}=\frac{-16+2\sqrt{39}}{10} $
| 0.75b=2.5b-26.25 | | 0.25(4x+2)=0.2(10x+1) | | z+-280=-619 | | 18+14m=16m | | -5n+7-3n=-17 | | 256-3x=384=5x | | 6w^2-8w=0 | | 5+2(6m+4)-3m=3(4+5M | | 4x+-2=-1x+9 | | 110=2(4x)+2x | | 43+32+a+16=180 | | d/4+9=5 | | (8y+3)3y+6=97 | | 7x-5=-3x+18 | | (3x-12)÷3=x+4 | | 4^2+24x+30=0 | | 0+3r+10=-20+13r | | (6x+2)=70 | | 0.25(4x+2)=0.2(10x+1 | | 118-u=245 | | 211=b-225 | | 2.7x+5-2x=3x-17 | | 15-6p-7=3p-16-5p | | -4(x+9)=7x+8 | | 2.96+-2b=0.96 | | 0.5x=6x+99 | | x-15/7=-3 | | -11=4x-7=9 | | -6-7x=x+2 | | 15-6p-7=3p-16-5p | | 5–2(4d-1)=-3 | | 5x+3=8x+9=51 |